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Abstract – Montgomery architectures of modular multipliers 
with one or two bits scanning are described in this paper. 
Multipliers have been described using hardware description 
language – VHDL, and implemented on FPGA integrated circuit 
EP4CE115F29C7. Comparative analysis of multiplier regarding 
minimum calculation time, maximum operating frequency and 
number of used logic elements of integrated circuit is given. 
Based on implemented modules, analysis of RSA module for data 
encryption is performed. 
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I. INTRODUCTION 

 
Data protection can be achieved using symmetric and 

asymmetric algorithms. Encryption procedure using 
symmetric algorithms occurs by substitution, transposition, 
shifting, as well as logic operations (XOR) over data bytes 
(AES). These operations are much simpler for hardware 
implementation, which leads to lower number of resources 
and higher operating speed of encryption module. 
Symmetric algorithms are mostly used for data encryption. 
Asymmetric algorithms are for one order of magnitude 
slower than symmetric ones. They are used for keys 
exchange and digital signatures. Data protection occur 
using quite demanding mathematical operations. One of the 
most commonly used asymmetric algorithms is RSA 
algorithm [1]. Data protection procedure occurs in a way 
that key message (P) is exponentiated onto public key (e), 
and then determine the remaining of dividing operation 
with public key (m). For hardware realization of RSA 
algorithm, binary algorithm of modular exponentiation is 
typically used [2, 3]. Using binary algorithm, modular 
exponentiation procedure is reduced to iterative modular 
multiplication (A·Bmodm). Some of modular multiplication 
algorithms are described in [2]. One of the most effective 
algorithms is Montgomery algorithm [4]. Calculation 
procedure is carried out by iterative summation. This 
algorithm is highly efficient and very simple for hardware 
implementation. It is used in algorithms with a large 
number of modular multiplications.    

In second chapter, fundamentals of Montgomery 
algorithm modular multiplication are given. Two ways of 
Montgomery modular multiplication are described: with 
scanning of one bit and two bits. Two RSA data encryption 
algorithms using Montgomery modular multiplier have 
been described. In third chapter, hardware realization of 
Montgomery module is described. Fourth chapter presents 

simulation results of implemented modules. Results are 
summarized in the conclusion. 

 
II. MONTGOMERY ALGORITHM 

 
A. Montgomery algorithm 
 

Montgomery algorithm is efficient and simple for 
hardware implementation. The result of modular 
multiplication is given by the following equation: 

 
 1MonPro( , , ) modA B m A B R m−= ⋅ ⋅  (1) 

 
The advantage of this algorithm is that calculation is 
performed without dividing with m, but dividing with 
number R. Number R is taken in the form of 2k, where k is 
the number of bits needed to represent input data. Number 
R-1 is inverse number of number R modulo m. For hardware 
implementation, dividing with 2k is simple shifting 
operation of k bits to the right. As shown in equation (1), 
the result of modular multiplication contains number  R-1. 
This number can be eliminated so that input data A and B 
convert to leftover system modulo m (A=MonPro(A,R,m), 
B=MonPro(B,R,m)), and then the result of modular 
multiplication D converts so that multiplies with number 1 
(D=Monpro(D,1,m)). As a result, we have D=A·Bmodm. 
Montgomery algorithm modular multiplication is given by 
the following pseudo code: 

 
Result D=(A·B)modm 
1. D=0 
2. from i=0 to i=k-1 
    a. D = D + A·Bi 
    b. D = (D + D(0)·m)/2 
3. output D 

Listing 1 
 

Number k is the number of bits used for data 
representation. This algorithm passes through k iterations, 
where k is the number of bits used for representation of 
numbers A, B and m. Value of bits of number B (bi) has 
been scanned. Depending on the value of scanned bit bi 
number D is added to number A. Then, in order to perform 
reduction with 2 in every iteration, if the current result D is 
odd, number m (m is a prime number in RSA algorithm) is 
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added. If not, zero is added. For this realization, two 
adders, one shift register and control logic is needed. 

Number of iterations can be reduced by scanning two 
bits of number B (bi, bi+1) in one iteration. Now, number of 
cycles needed for calculation is halved (g=k/2). Based on 
this, Montgomery algorithm pseudo code can be written as 
follows: 

 
Result D=(A·B)modm 
1. D=0 
2. from i=0 to i=g-1 
    a. D = D + A·Bi 
    b. D = (D + D(0)·m)/2 
    c. D = D + A·Bi+1 
    e. D = (D + D(0)·m)/2 
3. output D 

Listing 2 
 

Summation, depending of value of scanned bits bi, bi+1, can 
be grouped in one equation, as well as the condition for 
summation with number m. At the end, result is divided by 
4, i.e. content is shifted two positions to the right. Based on 
these transformations, following algorithm is formed: 

 
Result D=(A·B)modm 
1. D = 0 
2. from i=0 to i=g-1 
    a. D = D + A·Bi + 2A·Bi+1 
    b. D = (D + U1·m + U2·2m) 
    c. D = D/4 
3. output D 

Listing 3 
 

Condition U1 for summation of number m with result D has 
been defined using the equation: 
 
 1 (0) (0)iU b A D= ⊕  (2) 

 
while condition U2 for summation of number 2m with 
result is defined with: 
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First algorithm that scans only one bit bi passes through k 
iterations. Second algorithm that scans two consecutive bits 
bi and bi+1 passes through k/2 iterations. In the first one, 
summation is performed with numbers A and m, depending 
on current result value and value of bit bi. Second one, in 

one iteration adds numbers A, 2·A, m and 2·m, depending 
on the state of conditions U1, U2 and values of bi and bi+1.  
 
B. Carry Save Adders 

 
For implementation of Montgomery algorithm modular 

multiplication, special attention is paid to the 
implementation of the adder. Better performances 
regarding speed can be adjusted using CSA (Carry Save 
Adders). CSA has three input and two output vectors. 
Summation result consists of vector C and vector S, 
represented in redundant form. Vector C represents carry 
bit vector, while vector S is vector of the current bit sum. 
The summation result is: 

 
 ( , )C S X Y Z= + +  (4) 

 
Carry bit in CSA realization does not propagate through 
full adders, but it’s remembered in the shape of vector C. 
Propagation time of carry bit is eliminated, and hence result 
waiting time has been reduced. In order to get final result, 
vectors C and S needs to be summated using full adders, 
e.g. RCA (Ripple Carry Adder). 
 
C. RSA algorithm 

 
Montgomery modular multipliers are used for 

implementation of RSA module for data protection. Data 
encryption using RSA algorithm is performed as follows: 

 
modeC P m=  
 

where P is data that needs to be encrypted, e and m are 
public keys, and C encrypted data. Data decryption is 
performed as follows: 
 

moddP C m=  
 

where the pair of numbers d and m is a private key. 
Encryption and decryption procedures are very similar. For 
encryption, public key e has been used as exponent, and 
private key d for decryption. For hardware implementation 
of modular exponentiation, method of exponent bit 
scanning is suitable [2]. Depending of the direction of 
scanning, there are two methods: scanning from left to right 
and from right to left. Algorithm from right to left is shown 
by the following pseudo code [3]: 
 
From right to left  

Result modeC P m=  
1. 22 modnK m=  
2. (1, , )Z Monpro K M=   
3. ( , , )P Monpro P K m=  
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4. from 0i =  to 1i k= −  
      a. if 1ie = then ( , , )Z Monpro Z P m=  
      b. ( , , )P Monpto P P m=  
5. (1, , )Z Monpro Z m=  
6. C Z=  

Listing 4 
 
Algorithm from left to right is presented as [3]: 
 
From left to right 

Result modeC P m=  
1. 22 modnK m=  
2. (1, , )Z Monpro K M=  
3. ( , , )P Monpro P K m=  
4. from 1i k= −  to 0i =  
      a. ( , , )Z Monpto Z Z m=  
      b. if 1ie = then ( , , )Z Monpro Z P m=  
5. (1, , )Z Monpro Z m=  

6. C Z=  
Listing 5 

 
For right to left algorithm, two Montgomery modular 
multipliers are needed working in parallel, while for left to 
right algorithm, only one sequentially operated multiplier is 
needed. Algorithm from left to right saves the number of 
Montgomery multipliers, while the number of calculation 
iterations doubles. Number of clock cycles for right to left 
algorithm is (k+3)(k+2), and for left to right algorithm 
2(k+3)(k+2). 
 

III. HARDWARE IMPLEMENTATION 
 

Figure 1 shows Montgomery modular multiplier 
architecture with one bit scanning (Listing 1). It consists of 
C_sig and S_sig registers, shift register, multiplexer for 
signal routing, CSA network and control logic. Role of 
C_sig and S_sig registers is to temporary memorize the 
current result. Shift register on its output generate bit bi. 
Signals 0 and A are routed depending of the value of bit bi 
towards CSA network output. CSA network consists of two 
CSA. Inputs of CSA network are C_sig and S_sig signals, 
and output signals of first and second multiplexer. CSA 
network output signal states are memorized in C_sig and 
S_sig registers. Control logic controls the operation of the 
shift register, generates signal U1 and controls drives the 
state of C_sig and S_sig registers. For the final result to 
come, k+2 clock cycles are needed. In first clock cycle, 
registers C_sig and S_sig reset and data B is written into 
shift register. Through next k cycles, summation defined by 
loop inside Listing 1 is performed. At k+2 clock cycles, 

result of modular multiplication (C_sig and S_sig) is 
converted to normal form (D) using full adder. 

 
 

Fig. 1.  Architecture of Montgomery modular multiplier with one 
bit scanning  

 
Figure 2 shows architecture of Montgomery modular 
multiplier with two bits scanning (Listing 3). It consists of 
C_sig and S_sig registers, shift register, multiplexer for 
signal routing, CSA network and control logic. Role of 
registers C_sig and S_sig is to temporary memorize current 
result. Shift register on its output generate bites bi and bi+1. 
In dependence of bits bi and bi+1 value, signals  0, A and 2A 
are routed towards CSA network input. Depending of the 
state of signal U1, signals 0, m and 2m are routed towards 
CSA network over MUX2 multiplexer.  

 
 
Fig. 2.  Architecture of Montgomery modular multiplier with two 

bits scanning  
 

This CSA network architecture consists of four CSA 
adders. CSA network inputs are C_sig and S_sig signals, 
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and output signals of first and second multiplexer. Output 
signal state of CSA network is then memorized into 
registers C_sig and S_sig registers. Control logic that runs 
shift register, generates U1 and U2 signals and control 
operating states of C_sig and S_sig registers. In order to 
obtain the final result, k/2+2 clock cycles are needed. In the 
first clock cycle, registers C_sig and S_sig reset and data B 
is written into the shift register. During the next k/2 cycles, 
summation defined by loop inside Listing 3 is performed. 
At k/2+2 clock cycle, result of modular multiplication 
(C_sig and S_sig) is converted in normal form (D) using 
full adder. 

Based on presented architectures, two modules for 
Montgomery modular multiplication have been 
implemented. The first one is with on bit scanning 
Montgomery_b1, and second one with two bits scanning 
Montgomery_b2. Modules are described using hardware 
description language (VHDL) and synthesized by Quartus 
II and ModelSim software packages. Analyze of number of 
required resources for module implementation, maximum 
operating frequency and minimum calculation time has 
been performed.  

Using implemented modules Montgomery_b1 and 
Montgomery_b2, analyze of RSA module for data 
encryption is carried out. Based on RSA algorithm left to 
right and Montgomery modular multipliers, modules 
RSA_Montgomery_dl_b1 and RSA_Montgomery_dl_b2 for 
data encryption are implemented. These modules are 
analyzed in terms of number of used resources and 
maximum data encryption speed. 

 
IV. RESULTS 

 
Implementation of the RSA algorithm on FPGA 

integrated circuit EP4CE115F29C7, family Cyclone IV, 
Altera [5] is done in this paper. This component contains 
266 embedded multipliers (18x18 bits), 4 PLL blocks, 3888 
Kbits of embedded memory, 528 I/O pins and 114480 logic 
elements. Preference for FPGA circuit is caused by 
availability, ease of system testing, flexibility, relatively 
good performances in the means of speed and power 
consumption. 

 

 
Fig. 3.  Signal waveforms of Montgomery_b1 module 

 

 
Fig. 4.  Signal waveforms of Montgomery_b2 module 

 
Figures 3 and 4 shows results of Montgomery_b1 and 

Montgomery_b2 modules, respectively. For input signal 
values such as: A=688, B=640 and M=3337, where k=16, 
result of Montgomery modular multiplication is the number 
D=111. 

Figure 5 presents result of logic resources analysis 
needed for implementation of previously mentioned 
modules. Montgomery_b1 module occupy less resources 
comparing to Montgomery_b2 module, as a consequence of 
smaller CSA network and logic for signal routing. 

 

 
Fig. 5.  Number of used logic elements as a function of data 

length 
 
Table 1 shows module analysis results regarding 

maximum operating frequency. Based on given results, 
maximum operating frequency is obtained for 
Montgomery_b1 module, at various data length. This is a 
consequence of lower signal propagation time through 
CSA network, consisted of two CSA adders. 

 
TABLE I 

MAXIMUM OPERATING FREQUENCY [MHZ] 
k Montgomery_b1 Montgomery_b2 

16 323.94 160.77 
32 188.04 159.08 
64 206.83 157.65 

128 234.03 152.86 
256 252.4 152.84 
512 239.87 145.31 
1024 298.33 126.2 
2048 173.19 126.98 

 
Multiplying maximum operating frequency (Table I) 

with number of clock cycles used for processing one data, 
we get minimum calculation time for one data as a function 
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of data length. Those results are shown on Fig. 6. Lower 
calculation time is obtained for Montgomery_b2 
implementation. Maximum operating frequency of 
Montgomery_b2 module is slightly lower then for 
Montgomery_b1 module, but the number of clock cycles 
needed for calculation is twice lower, whereby better 
results are obtained with respect to calculation time. 

 

 
Fig. 6.  Minimum calculation time as a function of data length 

 
Analyzing RSA module for data encryption, following 

results are obtained. On Fig. 7, number of logic elements of 
implemented modules as a function of data length is 
shown. 

 

 
Fig. 7.  Number of used logic elements as a function of data 

length 
 

 
Fig. 8.  Maximum data encryption speed as a function of key 

length 
 
Least number of logic elements occupies implementation 

of left to right algorithm and Montgomery modular 
multiplier with one bit scanning. Most resources have been 

used by implementation of right to left algorithm and 
Montgomery modular multiplier with two bits scanning. 
Fig. 8 presents results of module analysis in terms of 
maximum data encryption speed. Best results have been 
obtained by right to left algorithm and Montgomery 
modular multiplier with two bits scanning. For key length 
of 1024 bits, maximum operating frequency is 55.32 [kb/s].  

 
IV. CONCLUSION 

 
Multipliers are implemented on Altera’s Cyclone 

family FPGA integrated circuit EP4CE115F29C7. 
Synthesis and simulation are performed by Quartus II and 
ModelSim software packages. Number of used logic 
elements depends of data length and is higher for multiplies 
architectures with two bits scanning. For example, for data 
length of k =128 bits it is a 55% increase, and for k=1024 
bits is 56%. Maximum operating frequency and minimum 
calculation time also depends of data length. Modular 
multiplier with one bit scanning has higher operating 
frequency, and lower calculation time. Maximum 
frequency of Montgomery_b1 module is in the range about 
324 MHz for k=16 up to 188 MHz for k=1024 bits. For 
Montgomery_b2 module, this frequency is in the range of 
161 MHz up to 126 MHz Calculation time is in the range 
of 0.05µs (k=16 bits) up to 5.45µs (k=1024 bits) for 
Montgomery_b1, and from 0.06µs up to 4.07µs for 
Montgomery_b2. Average calculation time in 
Montgomery_b2 implementation is decreased for about 
23% comparing to Montgomery_b1 implementation. Data 
encryption speed is highest for Montgomery_dl_b2 
implementation. For key length of k=1024 bits, maximum 
encryption speed is 55.32 kb/s, and number of used logic 
elements is 36960. The lowest number of used logic 
elements is at Montgomery_ld_b1 implementation. For key 
length of k=1024 bits, number of used logic elements is 
22649, and maximum encryption speed 26.28 kb/s. 
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