
Proceedings of the 5th Small Systems Simulation Symposium 2014, Niš, Serbia, 12th-14th February 2014

132

FPGA Implementation of Montgomery Modular
Multiplier

Velibor Škobić, Branko Dokić, and Željko Ivanović

Abstract – Montgomery architectures of modular multipliers
with one or two bits scanning are described in this paper.
Multipliers have been described using hardware description
language – VHDL, and implemented on FPGA integrated circuit
EP4CE115F29C7. Comparative analysis of multiplier regarding
minimum calculation time, maximum operating frequency and
number of used logic elements of integrated circuit is given.
Based on implemented modules, analysis of RSA module for data
encryption is performed.

Keywords – Modular multiplication, Montgomery algorithm,
RSA algorithm

I. INTRODUCTION

Data protection can be achieved using symmetric and

asymmetric algorithms. Encryption procedure using
symmetric algorithms occurs by substitution, transposition,
shifting, as well as logic operations (XOR) over data bytes
(AES). These operations are much simpler for hardware
implementation, which leads to lower number of resources
and higher operating speed of encryption module.
Symmetric algorithms are mostly used for data encryption.
Asymmetric algorithms are for one order of magnitude
slower than symmetric ones. They are used for keys
exchange and digital signatures. Data protection occur
using quite demanding mathematical operations. One of the
most commonly used asymmetric algorithms is RSA
algorithm [1]. Data protection procedure occurs in a way
that key message (P) is exponentiated onto public key (e),
and then determine the remaining of dividing operation
with public key (m). For hardware realization of RSA
algorithm, binary algorithm of modular exponentiation is
typically used [2, 3]. Using binary algorithm, modular
exponentiation procedure is reduced to iterative modular
multiplication (A·Bmodm). Some of modular multiplication
algorithms are described in [2]. One of the most effective
algorithms is Montgomery algorithm [4]. Calculation
procedure is carried out by iterative summation. This
algorithm is highly efficient and very simple for hardware
implementation. It is used in algorithms with a large
number of modular multiplications.

In second chapter, fundamentals of Montgomery
algorithm modular multiplication are given. Two ways of
Montgomery modular multiplication are described: with
scanning of one bit and two bits. Two RSA data encryption
algorithms using Montgomery modular multiplier have
been described. In third chapter, hardware realization of
Montgomery module is described. Fourth chapter presents

simulation results of implemented modules. Results are
summarized in the conclusion.

II. MONTGOMERY ALGORITHM

A. Montgomery algorithm

Montgomery algorithm is efficient and simple for
hardware implementation. The result of modular
multiplication is given by the following equation:

 1MonPro(, ,) modA B m A B R m−= ⋅ ⋅ (1)

The advantage of this algorithm is that calculation is
performed without dividing with m, but dividing with
number R. Number R is taken in the form of 2k, where k is
the number of bits needed to represent input data. Number
R-1 is inverse number of number R modulo m. For hardware
implementation, dividing with 2k is simple shifting
operation of k bits to the right. As shown in equation (1),
the result of modular multiplication contains number R-1.
This number can be eliminated so that input data A and B
convert to leftover system modulo m (A=MonPro(A,R,m),
B=MonPro(B,R,m)), and then the result of modular
multiplication D converts so that multiplies with number 1
(D=Monpro(D,1,m)). As a result, we have D=A·Bmodm.
Montgomery algorithm modular multiplication is given by
the following pseudo code:

Result D=(A·B)modm
1. D=0
2. from i=0 to i=k-1
 a. D = D + A·Bi
 b. D = (D + D(0)·m)/2
3. output D

Listing 1

Number k is the number of bits used for data
representation. This algorithm passes through k iterations,
where k is the number of bits used for representation of
numbers A, B and m. Value of bits of number B (bi) has
been scanned. Depending on the value of scanned bit bi
number D is added to number A. Then, in order to perform
reduction with 2 in every iteration, if the current result D is
odd, number m (m is a prime number in RSA algorithm) is

Proceedings of the 5th Small Systems Simulation Symposium 2014, Niš, Serbia, 12th-14th February 2014

133

added. If not, zero is added. For this realization, two
adders, one shift register and control logic is needed.

Number of iterations can be reduced by scanning two
bits of number B (bi, bi+1) in one iteration. Now, number of
cycles needed for calculation is halved (g=k/2). Based on
this, Montgomery algorithm pseudo code can be written as
follows:

Result D=(A·B)modm
1. D=0
2. from i=0 to i=g-1
 a. D = D + A·Bi
 b. D = (D + D(0)·m)/2
 c. D = D + A·Bi+1
 e. D = (D + D(0)·m)/2
3. output D

Listing 2

Summation, depending of value of scanned bits bi, bi+1, can
be grouped in one equation, as well as the condition for
summation with number m. At the end, result is divided by
4, i.e. content is shifted two positions to the right. Based on
these transformations, following algorithm is formed:

Result D=(A·B)modm
1. D = 0
2. from i=0 to i=g-1
 a. D = D + A·Bi + 2A·Bi+1
 b. D = (D + U1·m + U2·2m)
 c. D = D/4
3. output D

Listing 3

Condition U1 for summation of number m with result D has
been defined using the equation:

 1 (0) (0)iU b A D= ⊕ (2)

while condition U2 for summation of number 2m with
result is defined with:

 1

1

2

[1,0] [1,0] [1,0]
 [1,0]
 2 [1,0]

(1)

i

i

U D b A
U M
b A

U U
+

= + ⋅ +
+ ⋅
+ ⋅ ⋅

=

 (3)

First algorithm that scans only one bit bi passes through k
iterations. Second algorithm that scans two consecutive bits
bi and bi+1 passes through k/2 iterations. In the first one,
summation is performed with numbers A and m, depending
on current result value and value of bit bi. Second one, in

one iteration adds numbers A, 2·A, m and 2·m, depending
on the state of conditions U1, U2 and values of bi and bi+1.

B. Carry Save Adders

For implementation of Montgomery algorithm modular

multiplication, special attention is paid to the
implementation of the adder. Better performances
regarding speed can be adjusted using CSA (Carry Save
Adders). CSA has three input and two output vectors.
Summation result consists of vector C and vector S,
represented in redundant form. Vector C represents carry
bit vector, while vector S is vector of the current bit sum.
The summation result is:

 (,)C S X Y Z= + + (4)

Carry bit in CSA realization does not propagate through
full adders, but it’s remembered in the shape of vector C.
Propagation time of carry bit is eliminated, and hence result
waiting time has been reduced. In order to get final result,
vectors C and S needs to be summated using full adders,
e.g. RCA (Ripple Carry Adder).

C. RSA algorithm

Montgomery modular multipliers are used for

implementation of RSA module for data protection. Data
encryption using RSA algorithm is performed as follows:

modeC P m=

where P is data that needs to be encrypted, e and m are
public keys, and C encrypted data. Data decryption is
performed as follows:

moddP C m=

where the pair of numbers d and m is a private key.
Encryption and decryption procedures are very similar. For
encryption, public key e has been used as exponent, and
private key d for decryption. For hardware implementation
of modular exponentiation, method of exponent bit
scanning is suitable [2]. Depending of the direction of
scanning, there are two methods: scanning from left to right
and from right to left. Algorithm from right to left is shown
by the following pseudo code [3]:

From right to left

Result modeC P m=
1. 22 modnK m=
2. (1, ,)Z Monpro K M=
3. (, ,)P Monpro P K m=

Proceedings of the 5th Small Systems Simulation Symposium 2014, Niš, Serbia, 12th-14th February 2014

134

4. from 0i = to 1i k= −
 a. if 1ie = then (, ,)Z Monpro Z P m=
 b. (, ,)P Monpto P P m=
5. (1, ,)Z Monpro Z m=
6. C Z=

Listing 4

Algorithm from left to right is presented as [3]:

From left to right

Result modeC P m=
1. 22 modnK m=
2. (1, ,)Z Monpro K M=
3. (, ,)P Monpro P K m=
4. from 1i k= − to 0i =
 a. (, ,)Z Monpto Z Z m=
 b. if 1ie = then (, ,)Z Monpro Z P m=
5. (1, ,)Z Monpro Z m=

6. C Z=
Listing 5

For right to left algorithm, two Montgomery modular
multipliers are needed working in parallel, while for left to
right algorithm, only one sequentially operated multiplier is
needed. Algorithm from left to right saves the number of
Montgomery multipliers, while the number of calculation
iterations doubles. Number of clock cycles for right to left
algorithm is (k+3)(k+2), and for left to right algorithm
2(k+3)(k+2).

III. HARDWARE IMPLEMENTATION

Figure 1 shows Montgomery modular multiplier
architecture with one bit scanning (Listing 1). It consists of
C_sig and S_sig registers, shift register, multiplexer for
signal routing, CSA network and control logic. Role of
C_sig and S_sig registers is to temporary memorize the
current result. Shift register on its output generate bit bi.
Signals 0 and A are routed depending of the value of bit bi
towards CSA network output. CSA network consists of two
CSA. Inputs of CSA network are C_sig and S_sig signals,
and output signals of first and second multiplexer. CSA
network output signal states are memorized in C_sig and
S_sig registers. Control logic controls the operation of the
shift register, generates signal U1 and controls drives the
state of C_sig and S_sig registers. For the final result to
come, k+2 clock cycles are needed. In first clock cycle,
registers C_sig and S_sig reset and data B is written into
shift register. Through next k cycles, summation defined by
loop inside Listing 1 is performed. At k+2 clock cycles,

result of modular multiplication (C_sig and S_sig) is
converted to normal form (D) using full adder.

Fig. 1. Architecture of Montgomery modular multiplier with one
bit scanning

Figure 2 shows architecture of Montgomery modular
multiplier with two bits scanning (Listing 3). It consists of
C_sig and S_sig registers, shift register, multiplexer for
signal routing, CSA network and control logic. Role of
registers C_sig and S_sig is to temporary memorize current
result. Shift register on its output generate bites bi and bi+1.
In dependence of bits bi and bi+1 value, signals 0, A and 2A
are routed towards CSA network input. Depending of the
state of signal U1, signals 0, m and 2m are routed towards
CSA network over MUX2 multiplexer.

Fig. 2. Architecture of Montgomery modular multiplier with two

bits scanning

This CSA network architecture consists of four CSA
adders. CSA network inputs are C_sig and S_sig signals,

A m 0 0

B MUX 1 MUX 2

Shift

CSA

CSA

S_sig C_sig

U1

Kontrolna
logika

bi

A m 0 0

B MUX 1 MUX 2

Shift

CSA CSA

S_sig C_sig

U2

Kontrolna
logika

bi

2A 2m

bi+1

CSA

CSA

U1

RCA
D

RCA
D

Proceedings of the 5th Small Systems Simulation Symposium 2014, Niš, Serbia, 12th-14th February 2014

135

and output signals of first and second multiplexer. Output
signal state of CSA network is then memorized into
registers C_sig and S_sig registers. Control logic that runs
shift register, generates U1 and U2 signals and control
operating states of C_sig and S_sig registers. In order to
obtain the final result, k/2+2 clock cycles are needed. In the
first clock cycle, registers C_sig and S_sig reset and data B
is written into the shift register. During the next k/2 cycles,
summation defined by loop inside Listing 3 is performed.
At k/2+2 clock cycle, result of modular multiplication
(C_sig and S_sig) is converted in normal form (D) using
full adder.

Based on presented architectures, two modules for
Montgomery modular multiplication have been
implemented. The first one is with on bit scanning
Montgomery_b1, and second one with two bits scanning
Montgomery_b2. Modules are described using hardware
description language (VHDL) and synthesized by Quartus
II and ModelSim software packages. Analyze of number of
required resources for module implementation, maximum
operating frequency and minimum calculation time has
been performed.

Using implemented modules Montgomery_b1 and
Montgomery_b2, analyze of RSA module for data
encryption is carried out. Based on RSA algorithm left to
right and Montgomery modular multipliers, modules
RSA_Montgomery_dl_b1 and RSA_Montgomery_dl_b2 for
data encryption are implemented. These modules are
analyzed in terms of number of used resources and
maximum data encryption speed.

IV. RESULTS

Implementation of the RSA algorithm on FPGA

integrated circuit EP4CE115F29C7, family Cyclone IV,
Altera [5] is done in this paper. This component contains
266 embedded multipliers (18x18 bits), 4 PLL blocks, 3888
Kbits of embedded memory, 528 I/O pins and 114480 logic
elements. Preference for FPGA circuit is caused by
availability, ease of system testing, flexibility, relatively
good performances in the means of speed and power
consumption.

Fig. 3. Signal waveforms of Montgomery_b1 module

Fig. 4. Signal waveforms of Montgomery_b2 module

Figures 3 and 4 shows results of Montgomery_b1 and

Montgomery_b2 modules, respectively. For input signal
values such as: A=688, B=640 and M=3337, where k=16,
result of Montgomery modular multiplication is the number
D=111.

Figure 5 presents result of logic resources analysis
needed for implementation of previously mentioned
modules. Montgomery_b1 module occupy less resources
comparing to Montgomery_b2 module, as a consequence of
smaller CSA network and logic for signal routing.

Fig. 5. Number of used logic elements as a function of data

length

Table 1 shows module analysis results regarding

maximum operating frequency. Based on given results,
maximum operating frequency is obtained for
Montgomery_b1 module, at various data length. This is a
consequence of lower signal propagation time through
CSA network, consisted of two CSA adders.

TABLE I

MAXIMUM OPERATING FREQUENCY [MHZ]
k Montgomery_b1 Montgomery_b2

16 323.94 160.77
32 188.04 159.08
64 206.83 157.65

128 234.03 152.86
256 252.4 152.84
512 239.87 145.31
1024 298.33 126.2
2048 173.19 126.98

Multiplying maximum operating frequency (Table I)

with number of clock cycles used for processing one data,
we get minimum calculation time for one data as a function

Proceedings of the 5th Small Systems Simulation Symposium 2014, Niš, Serbia, 12th-14th February 2014

136

of data length. Those results are shown on Fig. 6. Lower
calculation time is obtained for Montgomery_b2
implementation. Maximum operating frequency of
Montgomery_b2 module is slightly lower then for
Montgomery_b1 module, but the number of clock cycles
needed for calculation is twice lower, whereby better
results are obtained with respect to calculation time.

Fig. 6. Minimum calculation time as a function of data length

Analyzing RSA module for data encryption, following

results are obtained. On Fig. 7, number of logic elements of
implemented modules as a function of data length is
shown.

Fig. 7. Number of used logic elements as a function of data

length

Fig. 8. Maximum data encryption speed as a function of key

length

Least number of logic elements occupies implementation

of left to right algorithm and Montgomery modular
multiplier with one bit scanning. Most resources have been

used by implementation of right to left algorithm and
Montgomery modular multiplier with two bits scanning.
Fig. 8 presents results of module analysis in terms of
maximum data encryption speed. Best results have been
obtained by right to left algorithm and Montgomery
modular multiplier with two bits scanning. For key length
of 1024 bits, maximum operating frequency is 55.32 [kb/s].

IV. CONCLUSION

Multipliers are implemented on Altera’s Cyclone

family FPGA integrated circuit EP4CE115F29C7.
Synthesis and simulation are performed by Quartus II and
ModelSim software packages. Number of used logic
elements depends of data length and is higher for multiplies
architectures with two bits scanning. For example, for data
length of k =128 bits it is a 55% increase, and for k=1024
bits is 56%. Maximum operating frequency and minimum
calculation time also depends of data length. Modular
multiplier with one bit scanning has higher operating
frequency, and lower calculation time. Maximum
frequency of Montgomery_b1 module is in the range about
324 MHz for k=16 up to 188 MHz for k=1024 bits. For
Montgomery_b2 module, this frequency is in the range of
161 MHz up to 126 MHz Calculation time is in the range
of 0.05µs (k=16 bits) up to 5.45µs (k=1024 bits) for
Montgomery_b1, and from 0.06µs up to 4.07µs for
Montgomery_b2. Average calculation time in
Montgomery_b2 implementation is decreased for about
23% comparing to Montgomery_b1 implementation. Data
encryption speed is highest for Montgomery_dl_b2
implementation. For key length of k=1024 bits, maximum
encryption speed is 55.32 kb/s, and number of used logic
elements is 36960. The lowest number of used logic
elements is at Montgomery_ld_b1 implementation. For key
length of k=1024 bits, number of used logic elements is
22649, and maximum encryption speed 26.28 kb/s.

REFERENCES

[1] R. L. Rivest, A. Shamir, L. Adleman, “A Method For

Obtaining Digital Signatures And Public-Key Crypto
Systems,” Communications of the ACM, vol. 21, no. 2,
pp. 120-126, Feb., 1978.

[2] C. K. Koc. “RSA Hardware Implementation”. TR 801,
RSA Laboratories, April 1996.

[3] V. Škobić, B. Dokić, Ž. Ivanović. “FPGA
Implementacija RSA algoritma,” Proccedings of 57th
ETRAN Conference, Zlatibor, Serbia, June 3-6, 2013,
pp.EL3.8.1-5.

[4] P. L. Montgomery, “Modular Multiplication Without
Trial Division,” Mathematics of Computation, vol. 44,
no. 170, pp. 519-521, Abbrev. Apr., 1985.

[5] “Cyclone IV EP4CE115F29C7 Data Sheets,”
http://www.altera.com.

